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A B S T R A C T  

In this paper we produce an invariant for any ergodic, finite entropy 
action of a lattice in a simple Lie group on a finite measure space. The 
invariant is essentially an equivalence class of measurable quotients of a 
certain type. The quotients are essentially double coset spaces and are 
constructed from a Lie group, a compact subgroup of the Lie group, and 
a commensurability class of lattices in the Lie group. 

1. I n t r o d u c t i o n  

In his 1986 ICM address  [Z2], Z immer  announced  a p rog ra m to classify all ac- 

t ions of la t t ices  in s imple groups by compar ing  them to cer ta in  a r i t hme t i ca l ly  

cons t ruc ted  actions.  In this  pape r  we give a n a tu r a l  order ing  on the a r i thmet i -  

cal ly  cons t ruc ted  quot ients  of  an a r b i t r a r y  ac t ion  and show tha t  wi th  respect  to 

this  order ing  there  is a unique m a x i m a l  a r i t hme t i c  quot ien t  for any  finite measure  

preserving,  finite entropy,  ergodic  action.  This  quot ien t  can be thought  of as an 

invariant  of the  or iginal  ac t ion  and can be descr ibed  by a giving a Lie group,  a 

compac t  subgroup  and a commensurab i l i t y  class of la t t ices  in the  Lie group. This  

work is closely re la ted  to work of L u b o t z k y  and Z immer  on act ions  of connected  

s imple  groups  [LZ2]. 

One of the  pr inc ipa l  ingredients  in our p roof  is Ra tne r  theory.  Ra tne r  com- 

ple te ly  classified the  invar iant  measures  for ac t ions  of connected  semis imple  and 

un ipo ten t  groups on cer ta in  homogeneous  spaces [R]. We use work of W i t t e  and  
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Shah that  generalizes this classification to actions of lattices in simple groups 

IS, w]. 
In §6 we discuss related results from [F] where it is shown that  for a continuous 

action on a manifold M,  there are quotients associated to representations of the 

fundamental group of M.  These provide lower bounds on the maximal quotient 

of this paper. 

2. Pre l iminar ie s  

We first define some basic terminology from ergodic theory. If  a group G acts on 

a measure space (X, #), we call a G-space (Y, v) a q u o t i e n t  o f  t h e  G a c t i o n  

if there is a measure preserving G map X-+Y. If the G action on X is ergodic, 

then the action on Y will be ergodic and the map will be essentially surjective. 

By a v i r t u a l  q u o t i e n t  of X we mean a quotient of a finite extension of the G 

action on X.  

Example 2.1: Suppose G acts on X and on XP---~X, a finite cover. Then if Y 

is a quotient for the G action on X t, it is a virtual quotient for the G action on 

X. This includes the case of disconnected covers. In particular, if Go < G is 

a subgroup of finite index, then X t = (X×G)/Go is a finite cover for X. This 

implies that  any quotient for the Go action on X is a virtual quotient for tile G 

action. 

We now define an important  class of actions for lattices F < G where G is a 

simple Lie group. 

Definition 2.2: An action of F is a r i t h m e t i c  if it is constructed in one of the 

following four ways: 

1) Let G -~ H~ be a group homomorphism, where H is a Q algebraic group, A 

an arithmetic lattice in H and B < H~ a compact group commuting with the 

image of G. Then any lattice F < G, acts on B\H~/A. 

2) Let N be a connected, simply connected nilpotent group, A < N a lattice. 

Suppose G acts on N by automorphisms so that  F normalizes A. Then F acts on 

the nilmanifold N/A,  and also on D\N/A,  where D < Aut (N)  is any compact  

subgroup commuting with F. 

3) Let F ~ K be a group homomorphism with dense image where K is compact.  

Let C < K be a subgroup. Then F acts on K/C. 
4) Let F act diagonally on Y = YlxY2xY3 where Y1 is as in 1) above, Y2 is as 

in 2) above and Y3 is as in 3) above. 
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Remark: (i) The space Y in 4) can be written as 

(B×D)\(H×NxK)/(A×A×C).  

This is not quite a double coset space as D is not a subgroup of N.  From the 

point of view of group actions it will usually be more convenient to view this 

space as described in 4). 

(ii) For some groups G with R-rank(G) = 1, there are algebraically defined 

F actions that  are not arithmetic in this sense, since there are non-arithmetic 

lattices in some rank one groups. 

A v i r t u a l  a r i t h m e t i c  q u o t i e n t  is a virtual quotient that  is an arithmetic 

action. An action of a group is said to have f in i te  e n t r o p y  if the entropy of 

any element of the group is finite. Given two arithmetic actions of a lattice 

F in a simple group G, say Y/ = (B \H/A i )x (D\N/A i )x (K/C) ,  for i = 1,2, 

where the action is given by the same representation of F, we call the actions 

c o m m e n s u r a b l e  if A1 is connnensurable to A2 and A1 is commensurable to A2. 

Conmmnsurable actions clearly adnfit a common finite extension. 

We now define the ordering on virtual arithmetic quotients. 

Detinition 2.3: If X~-+Y/ = (Bi\Hi/Ai)×(Di\Ni/Ai)x(Ki/Ci)  are virtual 

arithmetic quotients of X, we say that  YI>-Y2 if by passing to commensurable 

virtual arithmetic quotients X~--+Y/' we can find 

(i) a common extension X '  of the X '  and 

(ii) three Q surjections: 

so that  

(~1 : Hi -+H2 01(B1) < B2 
el(A ) < 

02 : NI-+N2 such that  02(D1) < D2 
O~(A,') < A2' 

~3 : KI-+K2 ~3(CI) < C 2 

xl Yi' 

commutes,  where 0 = (0t, 02, 03). 
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The main result of this paper proves the existence of a maximal virtual 

arithmetic quotient for any ergodic action of a lattice in simple group (with 

no rank assumption) with finite invariant measure and finite entropy. Actually, 

the maximal quotient will be an equivalence class of virtual arithmetic quotients, 

that  differ in arithmetic construction, but that have measurably isomorphic finite 

extensions. 

We prove this result by dealing with each of the three different types of arith- 

metic quotients individually and then showing that the product of the maximal 

object of each type is indeed the maximal arithmetic quotient desired. From 

now on we refer to arithmetic actions and quotients of type 1) in Definition 2.2 

as G quotients, those of type 2) as nilpotent quotients and those of type 3) as 

isometric quotients. We will also refer to virtuM G quotients, virtual nilpotent 

quotients and virtual isometric quotients. 

Theorem 2.16 of [LZ2] shows that an ergodic action of a connected simple 

group G with finite entropy has a maximal virtual G quotient unique up to 

commensurability and R conjugacy (see Definition 5.1 below). In fact, the proof 

of [LZ2] also shows the existence of a unique maximal G quotient for a F action 

provided we use the results of Shah and Witte in place of Ratner's Theorem. 

It is interesting to note that their proof of the existence of a maximal quotient 

goes through without this modification. We only need the results of Shah and 

Witte to prove uniqueness, since here we study the push-forward of a F invariant 

measure from the original space X to a homogeneous space, and it is only from 

the classification of invariant measures that we can see that this F invariant 

measure is in fact G invariant. 

To complete the proof of our main result, we now need only show the existence 

of maximal nilpotent and maximal isometric quotients, and then show that the 

product of the maximal object of each type is the maximal virtual arithmetic 

quotient. 

3. Nilpotent quotients 

In this section, we will show the existence of a maximal virtual nilpotent quotient. 

Throughout we will refer to an action of F on D \ N / A  as described in 2) of 

Definition 2.2 as a n U p o t e n t  ac t ion .  The first step in the proof is to show 

that the finite entropy condition bounds the dimension of the quotients. The 

uniqueness of the maximal quotient will then follow from Ratner theory which 

will be used to show that any pair of virtual nilpotent quotients is dominated 

by a common virtual nilpotent quotient. The theorem we need here is proven in 
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[W]: 

THEOREM 3.1: Let F be a lattice in a connected semisimple Lie group G with no 

compact factors and let N be a connected, simply connected nilpotent group and 

A < N a lattice. Suppose G acts on N by automorphisms such that F normMizes 

A and so acts on N / A .  Then any ergodic P invariant probability measure # on 

N / A  is homogeneous for a subgroup ofrb<N,  i.e., is the smooth measure on a 

closed orbit of  a closed subgroup of  F v< N .  

We need the following standard fact about the entropy of lattice actions on 

nilmanifolds. 

LEMMA 3.2: Suppose F acts on N via automorphisms. Let A < A < G be the 

maximal R-split subgroup ofF.  Then for ~/EA, we have the following formula for 

the entropy of  the action: 

hN/A (7) = hK\N/  = r, log (7) 

where a) is a weight of  the G representation on n with respect to A, and the sum 

is over co(7 ) > 1. 

The finite entropy condition on the F action on X controls the possible 

quotients for the actions. 

COROLLARY 3.3: I f  F < G is a lattice in a simple group and P acts ergodically 

on X with finite invariant measure and finite entropy, then the set of  entropy 

functions {h(7 ) ]'TEA} for virtual nilpotent quotients of  X is finite. 

Proo~ This follows from the proceeding lemma and standard facts about 

representation theory, once we note the following: if Y is a quotient of X,  then 

hx >hy and equality occurs when the quotient is a finite extension. II 

To facilitate our use of Theorem 3.1 we need to work with ergodie actions on 

N / A  rather than K \ N / A .  This motivates the following definition and lemma. 

Definition 3.4: Let F acting on K \ N / A  be a nilpotent action. We say the action 

is of r e d u c e d  f o r m  if the F action on N / A  is ergodie. 

LEMMA 3.5: Evesy nilpotent action of  F has a finite extension which is a 

nilpotent action of  reduced form. 

Proof: Consider the extension N / A ~ K \ N / A .  Since the action on the base is 

volume preserving and ergodic, we can pick an ergodic component of tile measure 
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on N / A  that  projects to the measure on the base. By Theorem 3.1, this is 

supported on an N r orbit for some subgroup N' < N, say N'/N~nIA1-1 for 

some N t which is normalized by F and some IE Aut(N).  Since the projection of 

this N '  orbit to K \ N / A  is of full measure, it follows that  there is yEN such that  

KNtyA is of full dimension in N,  and therefore so is KN. Since K is compact,  

g N '  = N. Therefore ( K n A u t ( N ' ) ) \ N ' / ( N ' n I A I - 1 ) - + K \ N / A  is a surjective, 

measure preserving map of manifolds of the same dimension and finite volume. 

So it is a finite extension. | 

We now prove the existence of maximal, though not necessarily unique, 

nilpotent quotients. 

LEMMA 3.6: There is a virtual nilpotent quotient in reduced form that is 
maximal. 

Proof" By Corollary 3.3, we can choose a virtual nilpotent quotient in reduced 

form, C~\N/A, with maximal entropy function among all such quotients. Now 

consider groups C < C ~ such that  C \ N / A  is a virtual arithmetic quotient. By 

the descending chain condition on compact subgroups of C ~ there is a minimal 

such C. 

Now we consider all larger virtual arithmetic quotients of reduced form 

K\M/A~-C\N/A.  To prove the lemma it suffices to see that  possible values of 

d im(M) are bounded. Let D = ker (M-+N) .  Then D is a Q group. Lemma 3.2 

above shows that  G and F centralize D, since C\N/A  already has maximal  

entropy. 

Now let P = G~<M. Then Zp(D) is a normal subgroup of P which contains 

G. Looking at the action of G on G~M/F~<A we see by Lemma 2.7 of [LZ2] that  

since G < Zp(D), then Zp(D) = P and so D is central in P and therefore in M.  

Since p = Lie(P) is defined over Q, we can choose a Q subspace ~tcp such that  

p = ~{~J~'. Let B :  ~'x~'--+~ be given by B(x,y) = proj~([x,y]). Since ~C~(p), 

the subspace I = ~ B ( ~ ' x ~  ~) is an ideal in p and I is defined over Q. 

Now dim(D')<_dim(G~< N),  so if d im(M) > d im(N)+dim(G~<N) 2, I is a proper 

Q ideal. Thus J -- [I, I] is a proper Q ideal that  is also an algebraic Lie sub- 

algebra. Since D is unipotent, we can choose ~ such that  some conjugate of g is 

contained in ~', hence in I ,  and since 0 is semisimple, in J .  It  follows from Lemma 

2.7 of [LZ2] that  some conjugate of G does not act ergodically on G~<M/F~<A. 
Since this action is conjugate to the action induced from the F action on M/A, 
we see that  F doesn' t  act ergodically on M/A. This contradicts our assumption 
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that  K \ M / A  was in reduced form. Therefore 

dim(M)_<dim(N) + dim(G~(N) 2. | 

Two measurably isomorphic nilpotent actions can have different Q structures. 

Since we are working in the measurable category and would like to view these as 

the same action, we need the following definition. 

Definition 3. 7: Let C \ N / A  be a nilpotent arithmetic F space defined via a map 

Pl : F--+ZAut(N/A)(C) and hE Aut (N/A) .  Then F also acts on hzCz -1 h - I \ N / A  

via p2  : F~ZA~t(g/z~)(hzCz-lh -~) where P2(7) = hP(7)h -~. We call two such 

nilpotent arithmetic actions R c o n j u g a t e .  

The following theorem shows the existence of a maximal virtual nilpotent 

quotient that  is unique up to commensurability and R conjugacy. 

THEOREM 3.8: Let F < G be a lattice in a simple Lie group. Let X be an 

ergodic F space with finite invariant measure and finite entropy. Then 

(1) There is a maximal virtual nilpotent quotient of the action in reduced form, 

say N(X) .  

(2) N(X) is unique up to ~ conjugacy. 

(3) I f Y  is any virtual nilpotent quotient of X in reduced form, then Y-<Z where 

Z is an R conjugate of N(X) .  

(4) Any virtual nilpotent quotient of X is the quotient of some finite ergodic 

extension of N(X) .  

Proof: Let C \ N / A  be a maximal quotient from Lemma 3.6. Let K \ M / A  be 

any other virtual nilpotent quotient in reduced form. Passing to commensu- 

rable actions, there is a finite extension X '  of X and measure preserving F maps 

¢: X'--+C\N/A and ~: X' -+K\M/A.  Let Iz be tile relevant measure on X ' ;  then 

t, = (¢, ~ ) , / t  is a finite F invariant ergodic measure for the diagonal action on 

(C \N /A)  × ( K \ M / A )  = ( C × K ) \ ( N × M ) / ( A x A )  that  projects to the standard 

measure on each factor. Since both quotients are ill reduced form, we can lift u 

to an ergodic invariant measure ~,' on ( N x M ) / ( A x A )  that  projects to the stan- 

dard measure on both factors and projects to u. By Theorem 3.1, this measure 

is supported oil the orbit of a Lie group J < N × M  that  is normalized by F. 

It  follows that  J projects surjectively to M and N. Thus the J orbit support- 

ing u' is J /~  where E = Ax/A1-1 where Ic Aut(M).  Give M the Q structure 

obtained by conjugating the given one by I. Then J is a Q subgroup and F. is 
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arithmetic and the surjection J--+N is a Q surjection. Furthermore, the pro- 

jection of J/E to (C \N /A)×  ( K \ M / A ) i s  (Au t (J )N(CxK)) \g /E) .  Thus letting 

D -- Aut(J)N(C×K),  we have that  D \ J / E  is a nilpotent virtual arithmetic quo- 

tient of X in reduced form and that  D \ J / E ~ - C \ N / A  and so is commensurable 

to C \ N / A .  Via a conjugate Q structure on J we see that  D \ J / E P K \ M / A .  The 

conjugate (~ structure corresponds to an R conjugate action, and this suffices to 

prove the theorem. | 

4. Isometric quotients 

Since all isometric actions have zero entropy, we need a different set of techniques 

to find a maximal virtual isometric quotient. We depend on elementary facts 

about  isometric actions and the following fact about representations of lattices, 

originally due to Margulis, but only stated explicitly in [Z3]. 

LEMMA 4.1: There are only finitely many dense embeddings o f f  in compact Lie 

groups. 

Proof: By the argument of theorem 3.8 of [Z3], any such embedding is Galois 

conjugate to the structure of F as an arithmetic subgroup of a compact extension 

of G. This leaves us with only finitely many possibilities (up to conjugacy). | 

COROLLARY 4.2: There exist maximal isometric quotients. 

We now prove that  maximal isometric quotients exist. 

THEOREM 4.3: Let F < G be a lattice in a simple Lie group. Let X be an 

ergodic F space with finite invariant measure and finite entropy. Then: 

(1) There is a maximal virtual isometric quotient of the action, say K ( X ) .  

(2) K(X) is unique up to conjugacy. 
(3) I f Y  is any virtual isometric quotient of X,  then Y-<Z where Z is a conjugate 

of K ( X ) .  

(4) Any virtual isometric quotient of X is the quotient of some finite ergodic 

extension of K ( X ) .  

Proof'. Let K / C  be a maximal quotient which exists by Corollary 4.2. Let D I E  

be any other isometric virtual arithmetic quotient in reduced form. Passing to 

commensurable actions, there is a finite extension X r of X and measure preserv- 

ing F maps ¢: XI-+K/C and ~: XI--+D/E. Let # be the relevant measure on 

Xr; then v = (¢, ~ ) , #  is a finite F invariant ergodic measure for the diagonal 

action on ( K / C ) x  (D/E)  that  projects to the standard measure on each factor. 
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Let B = (F, F) < K × D .  Since v is ergodic and F invariant, it will be supported 

on a single B orbit. This follows since the space of orbits of a compact group 

action is separated. Therefore v is Haar measure on some B orbit, i.e., Haar 

measure on B / A  for A = BN(kCk  -1 ×dEd -1) where k E K  and dCD. From the 

structure of v, we see that we have maps p: B--+K and p': B--+D such that 

p(A) < kCk -1 and p'(A) < dEd -1. Conjugating both actions, we see that 

B / A > - K / C  and B/A>-D/E .  Since K / C  is maximal, it follows that B / A  = K / C  

and K / C > - D / E .  The rest of the theorem now follows. | 

5. Maximal quotients 

We now state the main theorem of this section, which shows that we get a 

maximal virtual arithmetic quotient simply by taking the diagonal action on 

the product of the three maximal quotients above. We will need to define R 

conjugacy for a general arithmetic quotient. First we give the definition for G 

quotients from [LZ2]. 

Definition 5.1: Let K \ H / A  be an arithmetic G-space defined via a homoulor- 

phism 7rl: G -+ ZH(K) .  Let z C ZH(~rl(G)) and h E U. Then G also acts on 

h z K z - l h - l \ H / A  via ~2: G -~ Z H ( h z K z - l h - 1 ) ,  where 7r2(g) = hTrl(g)h -1. We 

call two such arithmetic actions ~ con juga t e .  

The definition of ]t( conjugacy for general arithmetic actions is now simple. 

Definition 5.2: Two arithmetic actions are ]R c o n j u g a t e  if and only if the G 

actions and the nilpotent actions are R conjugate and the isometric actions are 

conjugate. 

In this section we will need a more general statement about invariant measures 

than Theorem 3.1. 

THEOREM 5.3: Suppose F is a lattice in a semi-simple group G, G < H a Lie 

group and A is a lattice in H. Any  finite ergodic measure # for the F action on 

H / A  is homogeneous. Le., there is a closed subgroup D, with F < D < H such 

that It is Haar measure on a closed D orbit. 

This theorem is stated in IS] as corollary 1.4 under weaker assumptions on G. 

The proof is attributed to D. Witte. 

We can now state the main result of this section. 

THEOREM 5.4: Let F < G be a lattice in a simple Lie group. Let X be an 

ergodic F space with finite invariant measure and finite entropy. Then: 
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(1) There is a maximal virtual arithmetic quotient of the action in reduced form, 
say A(X). 
(2) A(X) is unique up to R conjugacy. 
(3) I fY  is any virtual arithmetic quotient of X in reduced form, then Y-~Z where 
Z is an R conjugate of A(X). 
(4) Any virtual arithmetic quotient of X is the quotient of some finite ergodic 

extension of A(X). 

Proof: Let G(X) be the maximal G quotient from [LZ2], N(X) be the maximal 

nilpotent quotient, and K(X) the maximal isometric quotient. We claim that 

the diagonal action on A(X) = G ( X ) x N ( X ) x K ( X )  is the maximal virtual 

arithmetic quotient of the theorem. To see this, it suffices to see that Haar 

measure on A(X) is ergodic. It will then follow that A(X) with Haar measure 

is a virtual quotient of X. We have maps 01: X--+G(X), 02: X--+K(X) and 

03: X--+N(X). Let ~, be the push-forward under (01,02, 03) of the measure on X. 

This is a F invariant measure on A(X) which projects to Haar measure on each 

factor. If Haar measure is ergodic, then any ergodic component of ~ must equal 

the Haar measure and therefore u must as well. The rest of the theorem then 

follows from Theorem 4.3, Theorem 2.16 and Theorem 2.16 of [LZ2]. So we are 

reduced to showing 

LEMMA 3.5: The diagonal action ofF on G ( X ) x N ( X ) x K ( X )  is ergodic. 

Proof: We have assumed that G(X) = B \H/A  and N(X) = D\N/A  are in 

reduced form and that the action on K(X) = K/C is given by a dense embedding 

of F in K. It therefore suffices to show that the F action on (H /A)x (N /A)xK  
is ergodic with respect to Haar measure. Let v' be the push-forward of the 

measure on X to G(X)xN(X)xK(X) ;  this projects to Haar measure on each 

factor. This is an ergodic measure, and we can lift it to an ergodic measure v 

on H / A x N / A x K  = ( H x N x K ) / ( A x A )  that projects to p' and that projects 

to Haar measure on each factor. Inducing to a G action and applying Theorem 

5.3 we see that this measure is supported on a closed orbit of a closed subgroup 

Y < H x N x K .  We will show that J = H x N x K .  By the general structure 

theory of Lie groups and our use of Theorem 3.5, we see that J = L x M x C  
where F < G < L and M is nilpotent with G < Aut(M) and C is compact, 

with a dense embedding F < C. The orbit supporting u can be viewed as 

(LxMxC)/ (A 'xA ' )  where A' and A' are lattices in M and L, respectively. This 

space can be viewed as (L /A ' )x  (M/A')xC and we will now examine all possible 

projections of each of these factors onto each factor of (H/A)x (N/A)xK to 
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deduce our result. Since these projections are measurable and F equivariant, 

we can use the results of [W]. There Wit te  shows that  any measurable quotient 

of such an action is actually affine. This forces L/A ~ to map trivially to N/A 
and K,  and M/A ~ to map trivially to H/A and K.  Also, since F is dense in 

C, any quotient of C has the form C/D for D a closed subgroup. This forces 

the projection of C into N/A and H/A to be trivial. Since neither of the other 

factors can map onto K,  the map C-+K must be a finite cover. Also, the maps 

L/A'--+H/A and M/A'--+N/A nmst be affine. Therefore, since L/A'xM/A'xC 
projects surjectively onto each of H/A, N/A and K,  we have H = L, M = N,  

and K = C. Therefore we have exhibited Haar measure on H/A×N/A×K as 
an ergodic measure and the theorem follows. | | Theorem 5.4 

6. Open questions and related results 

In this section we briefly describe some open questions and related results. Once 

we have constructed a canonical virtual arithmetic quotient it is natural to ask 

what its relation will be to the original action. A very special form of this question 

is to ask when the canonical virtual arithmetic quotient will be non-trivial. 

If  G -- SO(l ,  n) then there are lattices F < G with homomorphisms p: F ~ Z .  

This implies that  ally finite measure preserving, finite entropy action of Z gives 

rise to a nontrivial F action. Elementary considerations of entropy and spectrum 

immediately imply that  for most of these actions, the maximal quotient we con- 

struct must be trivial. This leads to the question of when the quotient will be 

non-trivial. 

The situation is very different if we assume R-rank(G)>2.  Then for any F < G, 

every known example of a finite measure preserving ergodic action of F on a 

manifold X is measurably isomorphic to a representative of its maximal quotient 

A(X). Even for the exotic action of Katok-Lewis and Benveniste [KL,B], the 

action is measurably isomorphic to a finite union of ergodic arithmetic actions. 

Currently, however, there is no proof that  A(X) need be non-trivial for G of 

higher rank. 

In IF], we use dynamical and topological hypothesis to prove that  if F is a 

lattice in a higher rank simple group acting on a compact manifold M, then 

certain representations of the fundamental group ~rl (M) give rise to non-trivial 

quotients of the action on M. 

We now briefly outline these results. The hypothesis we need are engaging 
conditions, which allow us to assume that  lifts of the action to finite covers are 

as ergodic as the original action. Various engaging conditions exist for connected 
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groups; see, e.g., [G, Z4]. In [F], we give the first general definition of engaging 

for discrete groups. 

Definition 6.1 ([F]): Let F act on a manifold M preserving a measure. The 

action is e n g a g i n g  if for any choice of: 

• finite index subgroup P' < F, 

• finite cover M '  of M,  

• lift of the F'  action to M' ,  

any P'  invariant measurable function on M '  is a lift of a measurable P invariant 

function on M. 

Given a discrete group F acting on a manifold M,  let A be the group of lifts of 

the P action to the universal cover of M. Then A can be described by the exact 

sequence: 

1-+lrl (M)--+A-+F-+I. 

In Theorem 6.2 below, assume F < G is a lattice with JR-rank(G)>_2, and ~rl(G) 

is finite. 

THEOREM 6.2 ([F]): Suppose F acts continuously on a compact manifold M ,  

preserving finite measnre and engaging. ~ lr ther  assume there is an infinite image 

linear representation a: A --+ GLn(~) .  Then there exist a Q algebraic group J 

and a finite set of  primes S such that  Jz < ~(Ir l(M)) < Jzs- Furthermore, there 

is a finite index subgroup F0 < F and a finite cover M I of M such that there is 

a measurable F0 equivariant map ¢: MI-+Y,  where Y is one of: 

(1) C \ J R / J z .  Here the F action is given by the existence of  a perfect Q algebraic 

group L -~ G~<J so F < G < L acts on J / J z  and C < ZL(F) is compact. 

(2) C \ J ~ / J z .  Here J is a perfect Q algebraic group and the F action is given by 

F < G < Y and C < Z j ( G )  is compact. 

(3) Or Y = YI×Y2, J = J l x J 2  and Jz = J l z × J 2 z  . Here the action is diagonal 

on Y l xY2  with Y1 as in (1) with J = Yl and Y2 as in (2) with J -- ,12. 

From our definition of the ordering on virtual arithmetic quotients it is clear 

that  A(M)>-Y,  where Y comes from the above theorem and a linear representa- 

tion of A. So for engaging actions on manifolds, as long as lrl(M) has an infinite 

image linear representation that  extends to A, we know A ( M )  is nontrivial. 

The proof of Theorem 6.2 also relies on the generalizations of Ratner 's  theorem 

by Shah and Witte discussed above IS,W]. These generalizations combined with 

results of Lubotzky and Zimmer on connected group actions [LZ1] and a detailed 

study of the topological structure of induced actions give the desired result. For 

further details the reader is referred to the article [F]. 
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